

Control unit

en - Installation instructions and warnings

Translation of the original instructions in English
 Translation of the original installation instructions in full.

GENERAL SAFETY INSTRUCTIONS 4
Work safely! 4
Special warnings in relation to European Directives 5

1. PRODUCT DESCRIPTION AND INTENDED USE 6
2. PRODUCT INSTALLATION 6
2.1 Installation criteria and special warnings in relation to essential requirements 6
2.2 Pre-installation checks 6
2.3 Product use limitations 6
2.4 Typical installation 7
2.5 Control unit installation 8
2.6 Description of electronic circuit board 10
2.7 Description of push button panel board 11
3. ELECTRICAL CONNECTIONS. 12
3.1 Three-phase power cable connection for NDCC1000 control units 12
3.2 Single-phase power cable connection for NDCC1100 and NDCC1200 control units 12
3.3 Electrical connections for the safety edge 12
3.3.1. Connecting an optical safety edge 12
3.3.2. Connecting a resistive or pneumatic safety edge 12
3.4 Electrical connections for photocells 13
3.5 Electrical connections for external buttons (INPUT) 13
3.6 Electrical connections for signal lights (OUTPUT) 13
3.7 Control unit electrical connections 13
3.8 Connection of a radio receiver 14
3.9 Initial switch-on and checking connections 14
3.10 Resetting door cycles - "Service" error 14
3.11 Deleting the control unit memory 14
3.12 Position learning 15
3.12.1. Position fine adjustment 16
3.12.2.Setting opening and closing positions with MECHANICAL LIMIT SWITCH 16
3.13 Changing direction of motor rotation 17
3.14 Enabling partial opening 17
4. TESTING AND PUTTING INTO SERVICE 18
4.1 Testing 18
4.2 Putting into service 18
4.3 Setting a PIN (control unit lockout code) 18
4.3.1. Setting the PIN (control unit lockout code) 18
4.3.2. Unlocking the control unit (momentary) 19
4.3.3. Deactivating the PIN (control unit lockout code) 19
5. LIST OF PARAMETERS AND ERRORS. 20
5.1 Service parameter table - "P" series 20
5.1.1. Automatic door cycles - P4 25
5.1.2. Overrun correction via brake activation P20-P22 25
5.1.3. Maximum permissible deviation from set limit switches P14 25
5.1.4. Automatic ground adaptation P30-P33. 25
5.1.5. Power transmission for wireless safety edges P88-P89 and P100-P112 25
5.1.6. Air curtain - P45 and P110-P112 25
5.1.7. Brake management for inverters without identification label P50-P54 e P57-P58 25
5.1.8. Alternative display - P5 25
5.2 Inverter setting parameter table - " \cup " series 26
5.3 Service parameter table - "C" series 27
5.4 D-Pro Automatic errors list 28
5.5 Nice inverter errors list 29
6. DISPOSING OF THE PRODUCT 30
7. PRODUCT SPECIFICATIONS 30
8. DECLARATION OF PRODUCT CONFORMITY 31

The design and construction of the devices contained in the D-PRO Automatic door control units, as well as the information given in these use instructions, comply with the applicable safety regulations. Incorrect installation can result in serious injury to persons carrying out the work or using the system. For this reason, it is important to comply fully with these instructions during installation.
Do not continue with the installation if you have any doubts whatsoever and, if necessary, request Nice customer service support. Throughout this manual, the term "product" refers to the D-PRO Automatic control unit mod. NDCC1000 mod. NDCC1100, mod. NDCC1200. Unless specified otherwise, the instructions apply to all models.

WORK SAFELY!

WARNING! - Important safety instructions. Failure to comply with safety regulations or any installation, use or maintenance other than those indicated in this booklet:

- Invalidates the warranty
- Can cause damage, injury or fatal accidents
- Relieves the Manufacturer from any liability.

WARNING! - Unauthorised work, tampering or modifications not in accordance with this manual may result in damage, injury or fatal accidents and will invalidate the warranty.
WARNING! - Store this manual carefully for future reference.
WARNING! - Before performing any operation or procedure, carefully read the general safety instructions given in this manual and sect. "2.3 Product use limitations" on p. $\underline{6}$.
These instructions must be followed:

- Before starting the installation, check the technical specifications of the product (see chap. "7. PRODUCT SPECIFICATIONS" on p. 30), in particular whether this product is suitable for automating your guided part. If it is not suitable, DO NOT proceed with the installation
- The product may not be used until it has been put into service (see chap. "4. TESTING AND PUTTING INTO SERVICE" on p. 30).
- During installation and maintenance operations, use the personal protective equipment (PPE) required by the safety regu-
lations in force in the country where the product is installed (e.g. protective gloves). WARNING! - According to the most recent European legislation, the installation of an automation must comply with the harmonised standards set out in the current Machinery Regulation, which enable the conformity of the automation to be declared.

In view of this, all connection to the mains, testing and putting into service, and maintenance work must be carried out solely by a competent, qualified technician!

- Before proceeding with product installation, check that all the material to be used is in excellent condition and suitable for use
- The product is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience or knowledge
- Children must not play with the product
- Do not allow children to play with the product control devices. Keep remote controls away from children
WARNING! - To avoid any risk arising from accidentally rearming the thermal cut-off device, this product must not be powered by an external manoeuvre device, such as a timer, or be connected to a circuit that is regularly energized or de-energized.
- Provide a disconnection device (not supplied) in the system's power supply network with a contact opening distance that allows complete disconnection under the conditions dictated by overvoltage category III
- During the installation, handle the product carefully, avoiding crushing, knocks, falls or contact with liquids of any kind. Do not put the product near sources of heat or expose it to open flames. All these actions can damage it and cause malfunctions or dangerous situations. If this happens, stop the installation immediately and contact the Support Service
- The manufacturer accepts no liability for damage to property or persons resulting from failure to follow the assembly instructions. Warranty for material defects is excluded in these cases
- The sound pressure level of the A-weighted emission is less than $70 \mathrm{~dB}(\mathrm{~A})$
- Cleaning and maintenance intended to be carried out by the user must not be carried out by unsupervised children
- Always disconnect the product from the power supply before working on the system (maintenance, cleaning)
- Check the system frequently, in particular check cables, springs and supports for any imbalance and signs of wear or damage. Do not use if repair or adjustment is required, as incorrect installation or balancing of the automation can lead to injury
- The product packaging must be disposed of in compliance with local regulations. The packaging material is recyclable cardboard (PAP 20 marking). Do not leave packaging unattended, within reach of children or animals.

SPECIAL WARNINGS IN RELATION TO EUROPEAN DIRECTIVES APPLICABLE TO THE PRODUCT

- Low Voltage Directive:

- Special warnings on the suitability for use of this product in relation to the "Low Voltage" Directive. This product meets the requirements of the "Low Voltage" Directive when used as intended and in the configurations provided in this instruction manual and in combination with the items in the Nice S.p.a. product catalogue.
- The requirements may not be guaranteed if the product is used in unintended configurations or with other unintended products; it is forbidden to use the product in these situations until the person carrying out the installation has verified compliance with the requirements of the directive.

- Electromagnetic Compatibility Directive:

- Special warnings on the suitability for use of this product in relation to the "Electromagnetic Compatibility" Directive.
- This product has been tested for electromagnetic compatibility in the most critical usage situations, in the configurations foreseen in this instruction manual and in combination with the items in the Nice S.p.a. product catalogue.
- Electromagnetic compatibility may not be guaranteed if the product is used in unintended configurations or with other unintended products; it is forbidden to use the product in these situations until the person carrying out the installation has verified compliance with the requirements of the directive.

1. PRODUCT DESCRIPTION AND INTENDED USE

- NDCC1000 is a control unit designed to operate rolling shutters and sectional doors with three-phase 3×400 Vac motors equipped with Nice encoders or mechanical limit switches.
- NDCC1100 is a control unit designed to operate high speed doors with HDFI single-phase motor with inverter equipped with Nice encoders.
- NDCC1200 is a control unit designed to operate sectional doors with single-phase 1×230 Vac motors equipped with Nice encoders or mechanical limit switches.

TABLE 1-Types of connection motor			
Model	Type of door	Connection	Max. power
NDCC1000	Rolling shutters and sectional doors	Three-phase motors with and without brake	2.2 kW
NDCC1100	High speed doors	Motors with inverter and brake	2.2 kW
NDCC1200	Sectional doors	Single-phase motors with start and run capacitors	2.2 kW

All control unit models can be connected to any common safety device.
To open and close a door, simply use the:

- specific button installed on the cover;
- external button;
- radio receiver.

WARNING! - Any use other than that described in this chapter and under environmental conditions other than those specified in this manual is to be considered improper and prohibited!

2. PRODUCT INSTALLATION

2.1 Installation criteria and special warnings in relation to essential requirements

Carry out the installation while carefully following all the instructions described in chap. "2. PRODUCT INSTALLATION" on p. $\underline{6}$ and in chap. "4. TESTING AND PUTTING INTO SERVICE" on p. 18.
Ensure that an adequate maintenance plan is put in place (see "4.2 Putting into service" on p. 18).

2.2 Pre-installation checks

Before installation, check the integrity of the control unit components, the suitability of the chosen model and the suitability of the installation site:

- Check that all the material to be used is in excellent condition and suitable for the intended use.
- Check that all conditions of use are within the product's use limitations (see
"2.3 Product use limitations") and within the limits of the values given in chap.

7. PRODUCT SPECIFICATIONS" on p. 30.

- Check that the chosen installation site is compatible with the overall dimensions of the product (fig.1).
- Ensure that the surface chosen for installing the product is solid and can guarantee stable installation
- Check that the fastening area is not subject to flooding; if necessary, install the product adequately raised off the ground.
- Check that the space around the product allows easy and safe access.
- Check that all electrical cables to be used are of the type listed in "TABLE 3 - Electrical cable specifications".

2.3 Product use limitations

The product may only be used as stated in "TABLE 2 - Use limitations".
WARNING! - The control units described in this instruction manual may NOT be used in areas at risk of explosion.

TABLE 2 - Use limitations		
Model	Central power supply	Type of motor (*)
NDCC1000	Three-phase 3×400 Vac $50 / 60 \mathrm{~Hz}$	Three-phase 3×400 Vac 50/60Hz with Nise encoder or mechanical limit switches
NDCC1100	Single-phase 1×230 Vac $50 / 60 \mathrm{~Hz}$	Single-phase with inverter 3x230 Vac $50 / 60 \mathrm{~Hz}$ with Nice encoder
NDCC1200	Single-phase 1×230 Vac $50 / 60 \mathrm{~Hz}$	Single-phase 1×230 Vac $50 / 60 \mathrm{~Hz}$ and start and run capacitors, with Nive encoder or mechanical limit switches
(*) Subject to the corresponding use limitations		

2.4 Typical installation

Fig. 2 shows an example of an automation system designed with Nice components:
1 Gearmotor
2 Transmitter
3 Safety edge
4 Junction box
5 Control unit
6 Spiral cable
7 Flashing light
8 Photocell
9 Digital keyboard - Transponder reader - Key selector switch - Push button panel

These components are positioned according to a typical and usual layout. Referring to fig. 2, determine the approximate position in which each component in the system will be installed.

IMPORTANT! - Before installation, prepare the necessary electrical cables for your system, referring to fig. 2 and "TABLE 3 - Electrical cable specifications".
WARNING! - The electrical cables used must be suitable for the particular installation site.
WARNING! - When laying pipes for the routing and entry of electrical cables into the control unit box, condensation may form inside the control unit due to possible water ingress in the inspection pits. This condensation could damage the electronic circuits.

2

TABLE 3 - Electrical cable specifications		
Connection	Type of electrical cable to be used	Maximum electrical cable length
A: MAINS cable with CEE connector	Motor $<1.5 \mathrm{~kW}=$ Cable $5 \times 0.75 \mathrm{~mm}^{2}$ Motor $>1.5 \mathrm{Kw}=$ Cable $5 \times 1.5 \mathrm{~mm}^{2}$	1 m (*) *
B: MOTOR cable	Nice gearmotor cables available as optional accessories	$5-7-11 \mathrm{~m}$
C: FLASHING LIGHT cable	$2 \times 0.75 \mathrm{~mm}^{2}$	10 m
D: PHOTOCELLS cable	$4 \times 0.5 \mathrm{~mm}^{2}$	15 m
E: KEY SELECTOR SWITCH cable	$3 \times 2 \times 0.25 \mathrm{~mm}^{2}$	10 m
F: Spiral CABLE FOR SAFETY EDGE	Nice spiral cable available as an optional accessory	4 m
(*) When the mains cable is longer than 5 m, use a larger diameter. l		

2.5 Control unit installation

Proceed as follows to fasten the control unit:

1. Open the control unit cover by unscrewing its fastening screws - fig.3A or fig.3B;
2. Prepare holes for the entry of electrical cables for the control and/or signalling accessories.

To maintain the IP protection rating, use a suitable tool (e.g. a hole cutter) and use the cable inlets already prepared at the bottom of the box. If necessary, the side cable inlets can be used but only if suitable pipe fittings are used.
03. Fasten the control unit using one of the 3 possible methods:
fig. 4 A directly to the wall applying the screws from inside the box;
fig. $4 B$ using the standard supports provided;
fig. 4C using the optional NDA100 kit. The NDA100 kit consists of 4 spacers and a protective cover for cable inlet into the control unit box. The NDA100 kit allows the cables to be routed behind the control unit (e.g. when the cable duct is external). The NDA100 kit allows the box to be fastened at a maximum distance of 2 cm from the wall.
04. Make all the electrical connections (see chap. "3. ELECTRICAL CONNECTIONS" on p.12).

To install other devices in the automation, refer to their respective instruction manuals.
(3)

B

C

$7 \begin{aligned} & \text { Three-phase motor connection } \\ & \text { (NDCC1000 control unit) }\end{aligned}$

Connection for single-phase motor with inverter (NDCC1100 control unit)

5 Connection for single-phase motor with boost board (NDCC1200 control unit)

TABLE 5A - Push button panel board

Back

TABLE 5A - Push button panel board	
Tag	Description
A	Flat-cable connector for communication between push button panel and control unit
B	DIP switches for changing control unit parameters and programming (see table below for various configurations)
C	Rear buttons for selecting control unit programming
D	Connector for external emergency button. Bridge if not in use

Access type "P" parameters
(see p. 20).

- Use the rear buttons C to
- Use the rear buttons to - To change the parameters, raise DIP switch 4 to the desired parameter and use the rear buttons (C) to change the
value.
Access type "C" parameters (see table on p. 27).
- Use the rear buttons (C) scroll through the parameters;
- To change the parameters, raise DIP switch 4 to the desired parameter and use the rear buttons (C) to change the value.

Access type "U" parameters (see table on p. 26).
(C) to

- Use the rear buttons to
- To change the parameters, raise DIP switch 4 to the desired parameter and use the rear buttons (C) to change the value.

These parameters will only be visible if deletions other than EE_0 have been made.

Position fine adjustment (2 encoder increments at a time)
See "3.12.1. Position fine
adjustment" on p. 16

Clear internal memory with control unit reset, essential for inverter initialisation.
See par. "3.11 Deleting the control unit memory"on page 14

Set opening, closing and partialopening positions.
See par. "3.12 Position learning" on page 15

Change the direction of rotation of the motor.
Parameter P75 can also be used.
See "3.13 Changing direction of motor rotation" on p. 17

3. ELECTRICAL CONNECTIONS

WARNING!

- All electrical connections must be made while the power is off.
- Connections must only be made by qualified personnel.
- On the power supply line, provide a disconnection device that ensures complete disconnection of the automation from the mains. The disconnection device must have contacts with an opening distance that allows complete disconnection under the conditions of overvoltage category III, in accordance with the installation regulations. If necessary, this device must ensure the power supply is cut quickly and safely; it must therefore be installed within sight of the automation. If it is installed in a non-visible position, it must have a system that blocks any accidental or unauthorised reconnection of the power supply, in order to avoid any danger. The disconnection device is not supplied with the control unit.

IMPORTANT!

We DO NOT RECOMMEND connecting any type of device or accessory not expressly indicated in this instruction manual.
The manufacturer accepts no liability for any damage caused by improper and non-compliant use of the system devices.
For further information, please contact the Nice support service.

3.1 Three-phase power cable connection for NDCC1000 control units

See fig. 7 for information on making the electrical connection.
A 16A CEE plug is connected to terminals L1, L2, L3, N and PE.
Connection to the control unit can also be made using a three-phase main switch (not provided).
In this case, the CEE plug can be removed during assembly.
10

3.2 Single-phase power cable connection for NDCC1100 and NDCC1200 control units

See fig. 6 (motors with inverter) or fig. $\underline{5}$ (single-phase motors with boost board) for information on making the electrical connection.
A Schüko plug is connected to terminals L1, L2 (with an additional connection between L 2 and N) and to the PE terminal.
Connection to the control unit can also be made using a single-phase main switch (not provided).
In this case, the Schüko plug can be removed during assembly.
11

3.3 Electrical connections for the safety edge

By default, activating the safety edge will cause the door to open fully. To change this option, see chap. "5. LIST OF PARAMETERS AND ERRORS" on p. 20 - parameter P105.

The task of the SAFETY EDGE input is to stop the manoeuvre in progress immediately and then open the door fully (this option is active by default - for other options see chap. "5. LIST OF PARAMETERS AND ERRORS" on p. 20 - parameter P105).
Devices such as optical safety edges (OSE) or a $8.2 \mathrm{k} \Omega$ constant resistance output can be connected to this input.
During the learning phase, the control unit recognises the type of device connected and triggers a "STOP" when there is any variation from the learned state.

3.3.1. Connecting an optical safety edge

If using an optical safety edge, which is to be connected as in fig.12C, change the position of the jumper between the central pin and the "OPTO" marking (fig. 12A).

3.3.2. Connecting a resistive or pneumatic safety edge

If using a resistive or pneumatic safety edge, it must be connected as shown in fig.12B:

- place an 8k2 Ohm resistor in series with the edge;
- change the position of the jumper between the central pin and the 8 k 2 marking (fig. 12A).

Appropriate steps can be taken to connect more than one device, even of different types, to the STOP SAFETY EDGE input:

- NO devices: connect the $8.2 \mathrm{k} \Omega$ resistor in parallel to the device;
- NC devices: connect the $8.2 \mathrm{k} \Omega$ resistor in series to the device;
- several NC devices can be connected "in series" with one another with no quantity limits;
- if several devices are used, all of them must be "cascaded" with a single 8.2 $k \Omega$ termination resistor;
a combination of NO and NC devices can be created, arranging the two contacts "in parallel". In this case, an $8.2 \mathrm{k} \Omega$ resistor must be placed "in series" with the NC contact. This also makes it possible to combine three devices: NA, NC and $8.2 \mathrm{k} \Omega$.

3.4 Electrical connections for photocells

(fig. 13) A photocell can be connected directly to the product's X5 terminal block. The photocell ensures safe transit because, if its infrared beam is interrupted while the door is closing, the door stops and returns to its upper end position (parameter P104 can be used to set different door behaviours if the photocell's infrared beam is interrupted).
WARNING - If using a one-way photocell with 3 connections, the switching contact and the positive power-supply pole on the photocell are connected together to terminal J30/1 with positive potential.
If the photocell is connected, remove the bridge on J31 of terminal block X5!

$$
\begin{array}{cc}
\text { Transmitter and receiver } & \text { Reflex photocell } \\
\text { photocell connection } & \text { connection }
\end{array}
$$

S= transmitting
$\mathrm{E}=$ receiving

3.6 Electrical connections for signal lights (OUTPUT)

(fig. 15) This control unit is equipped with 3 outputs programmable via parameters P110-P112 (see chap. "5. LIST OF PARAMETERS AND ERRORS" on p. 20).
WARNING! Being dry contacts, any type of load can be connected while staying below the limit set by the relay manufacturer: 10A 250 VAC; 10A 30VDC.

By default, the three outputs switch while giving a signal on the basis of door status:

- OUT 3 (pin 1-2-3) = DOOR CLOSED;
- OUT 2 (pin 4-5-6) = DOOR OPEN;
- OUT 1 (pin 7-8-9) = FLASHING.

3.7 Control unit electrical connections

WARNING! - All electrical connections must be made while the power is off.
After fastening the control unit box and preparing the holes for routing the electrical cables (see "3.3 Electrical connections for the safety edge" on p. 8), make the electrical connections as follows:

Phase	Description
1	- model NDCC1000: see "3.1 Three-phase power cable connection for NDCC1000 control units" on p. 12 - models NDCC1100 and NDCC1200: see "3.2 Singlephase power cable connection for NDCC1100 and NDCC1200 control units" on p. 12
2	Connect the electrical cable coming from the motor: - motor with electronic encoder (fig.16) - motor with mechanical limit switch (fig.17)
3	Finally, connect the electrical cables of the various accessories (see fig. 9).

Note - To facilitate cable connections, the terminals can be pulled out of their housings.

16 Motor with electronic encoder

(A)

Motor with mechanical limit switch

3.8 Connection of a radio receiver

The control unit has an SM connector for connecting a SMXI, SMXIS, OXI, OXIT or OXIBD radio receiver (with Nice one-way radio transmitter) or similar (the radio receiver is an optional accessory, not provided).
To insert the radio receiver, disconnect the control unit from the power supply and insert the receiver as shown in fig.18.

18

Parameter P106 (see chap. "5. LIST OF PARAMETERS AND ERRORS" on p. 20) lists the actions performed by the control unit depending on the activated outputs or the commands sent by the radio receiver.
Note - For any other information, please refer to the receiver's instruction manual.
To use the radio receiver, set parameter P106 to one of the available values (see chap. "5. LIST OF PARAMETERS AND ERRORS" on p. 20). By default, door movement via radio receiver is deactivated.

3.9 Initial switch-on and checking connections

After supplying power to the control unit, carry out the following checks:

- the green LED U10 (on the logic board) must flash regularly at a frequency of 1 flash per second.
- the photocell LEDs (if present) must flash (RX); the type of flashing is not significant because it depends on other factors.
- the red LED near the safety edge connector is off.

If one or more checks fails, disconnect the control unit from the power supply and check the various electrical connections made previously.

3.10 Resetting door cycles - "Service" error

If the control unit display reads "Service", the number of cycles performed (P1 value) has reached the value set in parameter P2, so maintenance must be performed on the automation. The error, even if present, does not affect the operation of the automation, which can be used normally. Proceed as follows to clear the error:

TABLE 7 - Enabling partial opening		
Number	Operation to be performed	Graphical description
1	"Service" displayed	
2	Set DIP switch 1 to ON	
3	Use the rear buttons to scroll through the parameters to parameter "P1"	
4	Set DIP switch 4 to ON	
5	The display shows the total number of cycles completed by the door. The value is the same as that set in parameter P2 (e.g.: 2000)	
6	Press and hold the two rear buttons for about 2 seconds until the display reads " 0 "	
7	Set all DIP switches to OFF	

3.11 Deleting the control unit memory

All data stored in the control unit can be deleted and the unit restored to factory settings.

- Single-phase motors (only those using the "boost capacitor" board) and three-phase motors $(380 / 400 \mathrm{~V})=$ "EE_0" type deletion.
- Inverter motors 1.1 kW or 2.2 kW without an identification label on the side of the inverter: EE_1 type deletion.
- Inverter motors 1.1 kW or 2.2 kW with an identification label on the side of the inverter: deletion type stated on label.
In all three cases, validate the operation by proceeding as follows:

Phase	Operation to be performed	Graphical description
1	Set DIP switches 1, 2 and 3 to ON	
2	Select the type of deletion to be performed using the rear buttons	
3	Press and hold the two rear buttons simultaneously for about 2 seconds	
4	Release them when the display shows 4 dashes at the bottom	
5	The control unit will reboot showing the firmware version on the display	
7	Set all DIP switches to OFF	

WARNING! - If wishing to change the type of motor from one with an inverter to one without an inverter, perform the EE_O type deletion before connecting the motor. If the motor is connected before performing the deletion and the control unit is switched on, the motor will run for about 2 seconds (in an unspecified direction), after which the control unit will go into error.

3.12 Position learning

Enter the position setting as indicated on p. 15 and p.16. The control unit then autonomously runs 4 complete cycles to improve motor/control unit performance and to comply with the limits (setup) as closely as possible.
WARNING! - Before starting to move the door, make sure it is at least 50 cm above the ground. If not, use the emergency manoeuvre system (see motor instruction manual). This precaution prevents the support cables (sectional doors) slipping out of their seat or the shutter being overwound (rolling shutters) in the event of reverse rotation.
WARNING! - If the direction of rotation does not match the set direction (Open button = opening direction) or error "F06" appears on the display, change the direction of rotation (see "3.13 Changing direction of motor rotation" on p. 17)
WARNING! - DO NOT interrupt the position learning procedure. If this happens, the entire learning procedure must be repeated.
The position learning phase can be repeated at any time, even after installation.

Setting opening and closing positions with ELECTRONIC LIMIT SWITCH (ENCODER)
Three positions can be programmed, as described below:

TABLE 9 - Opening/closing position	
Position	Meaning
Opening	Maximum opening position. The door stops on reaching this position.
Closure	Maximum closing position. The door stops on reaching this position.
Partial opening	Partially open position. Position at which the door stops after a partial-opening command is given.

WARNING! - Before starting to move the door, make sure it is at least 50 cm above the ground.
Proceed as follows to set the positions with electronic limit switch:

Phase	Operation to be performed	Graphical description
1	Set all DIP switches to OFF	
2	Set DIP switch 4 to ON	
3	The display shows the adjacent image with the top dashes flashing	(t) -1
4	Use the front button (to move the door to the desired maximum opening position	
5	After selecting the maximum opening position, press one of the rear buttons to confirm	
6	The display shows the adjacent image with the bottom dashes flashing	1)-
7	Use the front button to move the door to the desired maximum closing position	
8	After selecting the maximum closing position, press one of the rear buttons to confirm	
9	The display shows the adjacent image with the central dashes flashing	t- -1
10	If you do not wish to set a partially open position, skip to phase 14 of this procedure	
11	Use the front button to move the door to the desired partially open position	
12	After selecting the partially open position, press one of the rear buttons to confirm	
13	The display shows only the side bars	
14	Lower DIP switch 4	
15	The display shows "Setup-4"	$E[E$
16	Give an open or close command using the appropriate buttons on the front of the control unit. Wait for the control unit to finish setup	
7	At the end of the setup, the door will be fully open and the display will show the adjacent "image"	(t) -1

3.12.1. Position fine adjustment

After learning the positions, if the set limit stop is not in the desired position, the opening and closing limits can be adjusted:

- on DIP switch 3 (TABLE 11A)
- in parameters P10-P11 (TABLE 11B)
without having to set the positions again.
Proceed as follows:

TABLE 11A		
Phase	Operation to be performed using DIP switch 3	Graphical description
1	Set all DIP switches to OFF	
2	Open or close the door fully depending on which limit you wish to adjust	
3	Set DIP switch 3 to ON	
4	The display shows "0" and a dash: - top if the door is open - bottom if the door is closed	
5	Use the rear buttons to increase (raise) or decrease (lower) the limit position	
6	Set all DIP switches to OFF	
7	Give a full open-close or closeopen command (depending on where position was changed). Check the door is higher/lower than before	
8	If the new position is still not as from the beginning	sired, repeat the procedure

TABLE 11B		
Phase	Operation to be performed using parameters P10 and P11	Graphical description
1	Set all DIP switches to OFF	
2	Set DIP switch 1 to ON	
3	Scroll to parameter P10 or P11 using the rear buttons	
4	Set DIP switch 4 to ON	
5	The displays shows a 4-digit number indicating: P10 = maximum opening position P11 = maximum closing position	
6	Use the rear buttons to increase (raise) or decrease (lower) the limit position	
7	Once the change has been made, set all DIP switches to OFF	

Give a full open-close or closeopen command (depending on
8 where position was changed). Check the door is higher/lower than before

If the new position is still not as desired, repeat the procedure from the beginning
3.12.2. Setting opening and closing positions with MECHANICAL LIMIT SWITCH
Two positions can be programmed, as described below:

TABLE 12 - Setting positions with mechanical limit switch	
Position	Meaning
Opening	Maximum opening position. The door stops on reaching this position.
Closure	Maximum closing position. The door stops on reaching this position

WARNING! - Before starting to move the door, make sure it is at least 50 cm above the ground.
Proceed as follows to set the positions with mechanical limit switch:

TABLE 13		
Phase	Operation to be performed	Graphical description
1	Set all DIP switches to OFF	
2	Use the front button move the door to the desired maximum opening position	
3	a) Set contact cam 1 GREEN E4 to trigger the limit switch b) Tighten fastening screw "A" c) For fine adjustment use screw "B"	see fig. 21
4	Use the front button \square to move the door to the desired maximum closing position	
5	a) Set contact cam 3 WHITE $E \cdot$ to trigger the limit switch b) Tighten fastening screw "A" c) For fine adjustment use screw "B".	see fig. 21

6 WHITE
CLOSING additional limit switch 1

5 GREEN

OPENING additional limit switch 1
4 RED
CLOSING safety limit switch
3 WHITE
CLOSING limit switch
2 RED
OPENING safety limit switch
1 GREEN
OPENING limit switch

Safety limit switches 2 SEA and 4 SEП (RED, fig. 21) are set at the factory to closely follow the operating limit switch.

After the function test, check the fastening screws are positioned correctly.
The additional limit switches 5 P1 1̂ and 6 P1 (GREEN and WHITE, fig. 21) are potential-free switching contacts.
The CLOSING additional limit switch 1 Et (5 P1公 and 6 P1) is used as a preliminary limit switch; therefore, it must be set to trigger when the door reaches a distance of 5 cm from the ground.
The triggering of this limit switch prevents the execution of the "short reverse" manoeuvre.
If the safety edge is triggered, it only performs the STOP. This limit switch must always be connected to the control unit's PRE-CLOSE input.

3.13 Changing direction of motor rotation

If the door moves in the opposite direction to the one desired during the position learning phase, adjust:
-DIP switch 3 (TABLE 14A)

- parameter P75 (TABLE 14B)
without having to set the positions again.

TABLE 14A		
Phase	Operation to be performed using DIP switch 3	Graphical description
1	Set DIP switches 3 and 4 to ON	
2	The display shows two "Ls" upside-down and back to back	
3	Press and hold the rear button located behind the board	
4	Release the button when the display shows the two "Ls" inverted	$\square \bigcirc$
5	Set all DIP switches to OFF	
6	Set DIP switch 4 to ON to learn the positions again	

TABLE 14B		
Number	Operation to be performed using parameter P75	Graphical description
1	Set DIP switch 1 to ON	
2	Scroll to parameter P75 using the rear buttons	
3	Use the rear button to change the value from "0" to "1"	
4	Set all DIP switches to OFF to exit the parameters menu	
5	Set DIP switch 4 to ON to learn the positions again	

3.14 Enabling partial opening

The control unit allows a partially open position to be set during the limit switch setting.
If this position has not yet been set, the half-open option can be used without having to learn the positions again (the door will open exactly halfway between the upper and lower limit stops).
By default, the partially open (or half-open) position is deactivated and can be enabled as follows

Number	Operation to be performed	Graphical description
1	Set DIP switch 1 to ON	
2	Use the rear buttons to scroll to the parameter relating to the input where you wish to connect the NO contact for enabling partial opening (e.g. UP input P100)	
3	Set DIP switch 4 to ON	
4	Use the rear buttons to set the parameter value for the chosen input to: -11 = it will only be possible to perform partial opening and not full opening. -12 = the next opening command after the one given for partial opening will open the door fully.	
5	Set all DIP switches to OFF	

Enabling the partially open option is valid for both electronic and mechanical limit switches, provided that for the latter, the partial opening cam is connected to input "1/2 UP"

At the end of the procedure, switch the contact connected to the input to activate partial opening.
When an open command is given, the door will stop at the limit set in parameter P12.

4. TESTING AND PUTTING INTO SERVICE

During automation design, the testing and putting into service phases are the most important to ensure maximum safety.
The test can also be used to periodically check the devices in the automation. These steps must be carried out by qualified and experienced personnel who will be responsible for running the necessary tests to verify the solutions adopted against the existing risks and to verify compliance with the provisions of laws, standards and regulations, particularly with all the requirements of standard EN 12453, which sets out the test methods for testing gate and door automations.
The additional devices must undergo specific testing, both with regard to their functionality and their correct interaction with the control unit. As such, please refer to the instruction manuals of the individual devices for these tests.

4.1 Testing

The sequence of operations to be carried out to run the test, described below, refers to a typical installation (fig.2):

1. Check compliance with that stated in chapter "GENERAL SAFETY INSTRUCTIONS" on p. 4 .
2. Release the motor. Check the door can be manually opened and closed with a force of less than 225 Newtons.
3. Lock the motor.
4. Using the control devices (transmitter, control button, key selector switch, etc.), test the opening, closing and stopping of the door, ensuring that the movement of the leaves corresponds to what is expected. Run several tests to assess the movement of the door and identify any assembly or adjustment faults, as well as any particular friction points.
5. Check the correct functioning of all safety devices in the system (photocells, safety edges, etc.) one by one.
6. If dangerous situations caused by the movement of the leaves have been safeguarded by limiting the impact force, the force must be measured in accordance with EN 12453.

4.2 Putting into service

Putting into service can only take place once all test steps ("4.1 Testing" on p.18) have been carried out successfully on the control unit and the other devices. Partial or "provisional" putting into service is prohibited.

1. Produce the automation's technical file and keep it for at least 10 years; the file must include at least: automation assembly drawing, electrical connection diagram, risk analysis and solutions adopted, manufacturer's declaration of conformity of all devices used (for the control unit, use the enclosed EC Declaration of Conformity), copy of the automation instruction manual and maintenance plan.
2. Affix a plate to the door stating at least the following data: type of automation, name and address of the manufacturer (responsible for "putting into service"), serial number, year of construction and "CE" mark.
3. Permanently affix a label or plate stating the manual release and manoeuvre operations near the door.
4. Permanently affix a label or plate with this image to the door (minimum height 60 mm).

22

05. Produce the automation's declaration of conformity and give it to the owner.
06. Produce the "Automation use instructions and warnings" manual and give it to the owner.
07. Produce the automation maintenance plan (which must include all maintenance requirements for the individual devices) and give it to the owner.

4.3 Setting a PIN (control unit lockout code)

After checking that the control unit is operating correctly, you may decide to set a control unit lockout PIN that prevents the user from changing parameters, setting positions and deleting the memory.
WARNING - If you forget the access PIN, you can no longer operate the board. Please note down the code after saving it.

4.3.1. Setting the PIN (control unit lockout code)

Proceed as follows to set the control unit lockout PIN.
After rebooting, no more parameters can be changed.

TABLE 16 - Setting the PIN		
Phase	Operation to be performed	Graphical description
1	Set DIP switch 2 to ON	
2	Scroll to parameter C2 using the rear buttons	
3	Set DIP switch 4 to ON	
4	Set the PIN (lock/unlock code) using the buttons on the back of the display board (e.g. 3-0-9-2) Note down the PIN entered so as not to forget it later on	
5	Set all DIP switches to ON	
6	Press and hold the two rear buttons simultaneously for about 2 seconds until the set number flashes: the PIN is now saved	
7	Reboot the control unit to activat	he code lock
8	Set all DIP switches to OFF	

4.3.2. Unlocking the control unit (momentary)

Proceed as follows to unlock the control momentarily*:

TABLE 17 - Unlocking the control unit		
Phase	Operation to be performed	Graphical description
1	Set DIP switch 2 to ON. Parameter C1 is displayed	
2	Set DIP switch 4 to ON	
3	Set the PIN (lock/unlock code) using the buttons on the back of the display board (e.g. 3-0-9-2)	
4	While the PIN is displayed, set all DIP switches to OFF	
5	The control unit is now momentarily unlocked (*)	

(*) The control unit is unlocked momentarily; in the event of a reboot, it will once again be locked.
If wishing to permanently unlock the control unit, follow the procedure described in "4.3.3. Deactivating the PIN (control unit lockout code)" on p. 19.
4.3.3. Deactivating the PIN (control unit lockout code)

Proceed as follows to permanently deactivate the control unit lockout PIN.

Phase	Operation to be performed	Graphical description
1	Set DIP switch 2 to ON. Parameter C1 is displayed	
2	Set DIP switch 4 to ON	
3	Set the PIN (lock/unlock code) using the buttons on the back of the display board (e.g. 3-0-9-2)	
4	While the PIN is displayed, set DIP switch 4 to OFF	
5	Scroll to parameter C2 using the rear buttons	
6	Set DIP switch 4 to ON	
7	The previously set PIN is displayed (e.g. 3-0-9-2)	
8	Use the rear buttons to change the value to "0" (disabled)	
9	Set all DIP switches to OFF	
10	The control unit is now permanently unlocked	

To reset the control unit lockout PIN at a later date, follow the procedure described in "4.3.1. Setting the PIN (control unit lockout code)" on p. 18.

5. LIST OF PARAMETERS AND ERRORS

5.1 Service parameter table - "P" series

	Parameter name	$\frac{1}{5}$						$\frac{\oplus}{2}$	$\stackrel{\text { ® }}{\text { ® }}$	
0	Set door positions Button $\uparrow=$ Upper limit stop Button $\downarrow=$ Lower limit stop Both buttons =Partial opening limit stop	Num.	-	-	-	-	-	-	x	0.33
	Maintenance									
1	Cycle counter (1 increment = 10 door cycles)	Num.	0	9999	0	0	0	x	\times	0.33
2	Cycles limit for door maintenance	Num.	0	9999	2000	3500	3500	x	x	0.33
3	Restart counter	Num.	0	65535	0	0	0	x	\times	0.33
4	Automatic door cycles (waiting time between manoeuvres)	Sec	0	255	0	0	0	x	x	0.33
5	```Door status display options \(0=\) Basic display (with dashes) \(1=\) Display with dashes during movement and with letters on reaching limit stops \(2=\) Display all with letters```	Num.	0	2	0	0	0	x	x	0.40
6	Storage of last 10 errors	-	-	-	-	-	-	x	x	0.46
	Electronic encoder									
10	Upper limit stop	Incr.	0	8191	Off	Off	Off	-	x	0.33
11	Lower limit stop	Incr.	0	8191	Off	Off	Off	-	x	0.33
12	Half-open limit switch (partial opening if set)	Incr.	0	8191	Off	Off	Off	-	x	0.33
13	Pre-limit distance (in relation to lower limit stop)	Incr.	1	700	50	50	50	-	x	0.33
14	Safety limit stop distance	Incr.	0	5000	100	250	250	-	x	0.33
15	Nice encoder firmware version	Num.	0	-	-	-	-	-	x	0.33
16	Number of operating hours run by Nice encoder	Hours	0	9999	-	-	-	-	x	0.33
17	Minimum distance for photocell trigger (see also parameter P104)	Incr.	0	8191	Off	Off	Off	-	x	0.57
	Overrun control									
20	Adjustment of maximum overrun correction	Incr.	0	240	2	2	2	-	x	0.33
21	Maximum overrun correction for upper limit stop (can only be set if P20 $=0$)	Incr.	0	200	50	70	70	-	\times	0.33
22	Maximum overrun correction for lower limit stop (can only be set if P20 $=0$)	Incr.	0	200	50	70	70	-	x	0.33
23	Initial overrun at upper limit stop	Incr.	ro	-	-	-	-	-	x	0.33
24	Initial overrun at lower limit stop	Incr.	ro	-	-	-	-	-	x	0.33
	Adjustment of automatic ground adaptation									
30	Automatic ground adaptation options: $0=$ No automatic ground adaptation $1=$ Limited to lower limit stop $2=$ Including downward correction	Num.	0	2	0	0	0	-	x	0.33
31	Maximum encoder increments for ground search	Incr	0	240	5	5	5	-	x	0.33
32	Maximum limit for ground adaptation beyond lower limit stop (default maximum limit P11-50)	Incr.	0	8191	$\begin{gathered} \hline \text { P11- } \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \text { P11- } \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { P11- } \\ 50 \\ \hline \end{gathered}$	-	\times	0.33
33	Minimum height (in percent) to validate ground adaptation	\%	0	100	30	30	30	-	x	0.33
	Automatic closing / Air curtain									
40	Automatic closing options $0=$ Standard automatic closing $1=$ Automatic closing is not disabled by pressing the STOP button $2=$ All commands ignored during waiting time $3=$ Automatic closing activates regardless of door position	Num.	0	3	0	0	0	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x	$\begin{aligned} & 0.33 \\ & 0.45 \\ & \\ & 1.44 \end{aligned}$
41	Waiting time for automatic closing $0=$ Automatic closing deactivated	Sec	0	9999	0	0	0	x	x	0.33
42	Traffic light warning time	$\begin{aligned} & 1 / 10 \\ & \mathrm{Sec} \end{aligned}$	0	240	0	0	0	x	x	0.33
43	Waiting time for automatic closing if photocells are activated 0 = Disabled	Sec	0	240	0	0	0	x	\times	0.33
44	Disabling of automatic closing after n attempts to trigger safety edge $0=$ Not disabled $1=$ Disabled after 1 attempt 2-5 = Disabled after n attempts	Num.	0	5	3	3	3	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	\times \times \times	$\begin{aligned} & 0.33 \\ & 1.33 \\ & 0.33 \\ & \hline \end{aligned}$
45	Time delay for air curtain deactivation	Sec	0	9999	0	0	0	x	x	1.05

	Parameter name	$\frac{t}{5}$					$\begin{aligned} & \text { Default value } \\ & \text { EE_2/EE_3 } \end{aligned}$	$\stackrel{0}{2}$	$\xrightarrow{\text { II }}$	
46	Traffic light warning activation options $0=$ Warning only if door is at upper limit stop $1=$ Warning after closing command regardless of door position	Num.	0	1	0	0	0	X	X	1.44
	High speed doors / Inverter									
50	Brake control options (solely for EE_0 and EE_1 deletion) $0=$ No brake connected 1 = Brake connected	Num.	0	1	1	1	-	x	X	0.33
51	Brake activation delay during opening manoeuvre (solely for EE_0 and EE_1 deletion)	10 ms	0	50	12	10	-	X	X	0.33
52	Brake deactivation delay during opening manoeuvre (solely for EE_0 and EE_1 deletion)	10 ms	0	50	4	4	-	x	X	0.33
53	Brake activation delay during closing manoeuvre (solely for EE_0 and EE_1 deletion)	10 ms	0	50	12	10	-	x	X	0.33
54	Brake deactivation delay during closing manoeuvre (solely for EE_0 and EE_1 deletion)	10 ms	0	50	4	4	-	X	X	0.33
55	Duration of slow speed (or creep) for reaching upper limit stop	10 ms	20	250	70	70	70	-	X	1.37
56	Duration of slow speed (or creep) for reaching lower limit stop	10 ms	10	250	15	15	15	-	X	1.37
57	Brake activation below minimum speed detected by encoder (solely for EE_0 and EE_1 deletion)	Incr	0	50	0	10	-	-	X	0.37
58	Brake activation delay in case of emergency stop	ms	0	500	0	10	10	-	X	0.37
59	Range of fast closing distance calculated from upper limit stop To set, press and hold the STOP button for about 2 seconds	Incr	0	5000	0	0	0	-	X	1.08
	Time monitoring									
60	Modes for monitoring manoeuvre run time $0=$ Monitoring disabled or active for tubular motors $1=$ Automatic mode (only with electronic limit switch) $2=$ Manual mode 3 = Manual mode, including minimum time monitoring (only for inverters)	Num.	0	4	2	3	3	X	X	0.33
61	Maximum run time (full manoeuvre)	Sec.	0	240	60	10	10	X	X	0.33
62	Maximum run time (partial opening)	Sec.	0	240	60	6	6	X	X	0.33
63	Minimum run time (full manoeuvre) for motors with inverter	1/10 s	0	240	0	20	20	X	X	0.33
64	Manoeuvre average run time	1/10 s	0	-	-	-	-	X	X	0.33
65	Last run time performed by door	1/10 s	0	-	-	-	-	X	X	0.33
	Door control									
70	Door operation selection $0=$ Standard operation (single-phase and three-phase motors) $1=$ Motor operation with Nice inverters without label $2=$ Not used 3 = Motor operation with Nice inverters with label EE_2 and EE_3 4 = Tubular motor operation	Num.	0	4	0	1	3	x x	x x	0.33 1.32
71	Main contactor activation delay	ms	0	250	0	0	0	X	X	0.33
72	Direction relay deactivation delay	ms	15	250	23	23	23	X	X	0.33
73	Rotation direction inversion delay	10 ms	6	250	70	70	70	X	X	0.33
74	Time delay for inverting run direction following safety edge trigger	10 ms	3	250	4	4	4	X	X	0.33
75	Run direction (can also be changed with DIP switches 3 and 4 ON) $0=$ No change to motor direction of rotation 1 = Change motor direction of rotation	Num.	0	1	0	0	0	X	X	1.53
76	Motor starting capacitor activation time (single-phase motors only)	1/10 s	0	50	15	0	0	x	X	0.50
77	Auto safety test delay	10 ms	10	250	25	25	25	X	X	0.63

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Parameter name \& \[
\frac{t}{5}
\] \& \[
\begin{aligned}
\& \frac{E}{E} \\
\& \frac{0}{E} \\
\& \frac{1}{\mathbb{N}}
\end{aligned}
\] \& \& \& \& \& \(\stackrel{0}{2}\) \& \(\stackrel{0}{\text { II }}\) \& \\
\hline 78 \& \begin{tabular}{l}
Electronic encoder selection \\
0 = Standard encoder \\
1 = Special encoder \\
To set, press and hold the STOP button for about 2 seconds
\end{tabular} \& Num. \& 0 \& 1 \& 0 \& 0 \& 0 \& x \& x \& 0.80 \\
\hline \& Traffic light / door bolt \& \& \& \& \& \& \& \& \& \\
\hline 80 \& \begin{tabular}{l}
Traffic light selection options (NDA030 board only) \\
\(0=\) Traffic light deactivated \\
\(1=\) Traffic light flashes during manoeuvre \\
\(2=\) Traffic light on steady during manoeuvre \\
\(3=\) Red/green traffic light for loading ramps (green light for door open, red light during manoeuvre and when door closed)
\end{tabular} \& Num. \& 0 \& 3 \& 0 \& 0 \& 0 \& X \& x \& 0.33 \\
\hline 81 \& \begin{tabular}{l}
Traffic light options \\
If set to 1, it will change the following parameters: \\
P100 = 10 ("UP" input on connector X4 - Open externally) \\
P110 \(=10\) (Relay 1- Internal red/green light) \\
P111 = 11 (Relay 2 - External red/green light) \\
P112 = 12 (Relay 3 - Traffic light on/off at entrance) \\
To set, press and hold the STOP button for about 2 seconds
\end{tabular} \& Num. \& 0 \& 1 \& 0 \& 0 \& 0 \& X \& x \& 0.33 \\
\hline 82 \& Warning time for door opening with flashing traffic light \& Sec \& 0 \& 240 \& 0 \& 0 \& 0 \& X \& X \& 0.33 \\
\hline 83 \& Waiting time for door opening after external opening command \& 1/10 s \& 0 \& 24.0 \& 0 \& 0 \& 0 \& x \& x \& 0.33 \\
\hline 84 \& Waiting time before closing door bolt \& 1/10 s \& 0 \& 24.0 \& 1.0 \& 1.0 \& 1.0 \& x \& x \& 0.51 \\
\hline 85 \& Extended pressing time for locking door bolt \& 1/10 s \& 0 \& 24.0 \& 2.0 \& 2.0 \& 2.0 \& X \& X \& 0.51 \\
\hline 86 \& Extended pressing time for unlocking door bolt \& 1/10 s \& 0 \& 24.0 \& 2.0 \& 2.0 \& 2.0 \& X \& X \& 0.51 \\
\hline 87 \& Timeout for locking/unlocking door bolt \& 1/10 s \& 0 \& 24.0 \& 24.0 \& 24.0 \& 24.0 \& x \& x \& 0.70 \\
\hline 88 \& Power transmission activation time (only for wireless safety edges) \& Min \& 0 \& 255 \& 60 \& 60 \& 60 \& X \& X \& 1.67 \\
\hline 89 \& Wait time before power transmission (only for wireless safety edges) \& Min \& 0 \& 9999 \& 1440 \& 1440 \& 1440 \& X \& x \& 1.64 \\
\hline \& Loop detector (K70 board) (No longer used) \& \& \& \& \& \& \& \& \& \\
\hline 90 \& Loop detector options (K70) \& - \& - \& - \& - \& - \& - \& X \& X \& 0.70 \\
\hline 91 \& Locking time in case of cross traffic \& - \& - \& - \& - \& - \& - \& X \& X \& 0.70 \\
\hline \& Options for inputs \& \& \& \& \& \& \& \& \& \\
\hline 100 \& \begin{tabular}{l}
UP input options (Connector X4 - J16) \\
\(0=\) Opening by internal control \\
\(10=\) Opening by external control \\
11 = Enable partial opening \\
\(12=\) Enable partial opening - next command will open door fully \\
13 = Enable automatic closing (See parameters P40-46) \\
14 =Enable man-present mode \\
\(15=\) Opening from outside with ISO loading ramp \\
\(16=\) Lock for opening command \\
17 =Fire detection (with sensor) - close door \\
18 =Fire detection (with sensor) - open door \\
\(19=\) Fire detection (with sensor) - partially open door \\
\(20=\) Door bolt detection sensor \\
21 = Lock for closing command \\
22 = Opening command for partial opening \\
23 = Lock front panel open and close buttons
\end{tabular} \& Num. \& 0 \& 23 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
X \\
X \\
X \\
x \\
x \\
X
\end{tabular} \& \begin{tabular}{l}
X \\
\(x\) \\
x \\
\(x\) \\
x \\
x
\end{tabular} \& \[
\begin{aligned}
\& \hline 0.33 \\
\& 0.35 \\
\& 0.53 \\
\& \\
\& \\
\& \\
\& \\
\& \\
\& \\
\& \hline .97 \\
\& 1.08 \\
\& 1.38
\end{aligned}
\] \\
\hline 101 \& ```
DOWN input options (Connector X4 - J18)
0 = Closing by internal control
1 = Closing by internal control with 5-second wait before manoeuvre
starts
10-23 = as for P100
``` \& Num. \& 0 \& 23 \& 0 \& 0 \& 0 \& X \& X \& 0.33 \\
\hline 102 \& ```
IMP input options (Connector X4 - J17)
0 = Signal input (pull cord)
1 = Step-by-step input (closes if door open)
10-23 = as for P100
``` \& Num. \& 0 \& 23 \& 0 \& 0 \& 0 \& x
x \& X
x \& 0.33
1.29 \\
\hline 103 \& PRE LIMIT input options (Connector X7 - COM \& Pre-L DOWN) 0 = Partial opening (only for mechanical limit switch) 10-23 = as for P100 \& Num. \& 0 \& 23 \& 0 \& 0 \& 0 \& X \& x \& 0.33 \\
\hline 104 \& \begin{tabular}{l}
Photocell input options (Connector X5 - J31) \\
\(0=\) Open door (close door from upper limit stop on P43>0) \\
\(1=\) Open door only above the position set in P17 (by changing the value of P104 from 0 to 1, the current door position will be saved automatically in P17 \\
\(2=\) The door will stop if the input is activated \\
\(10-23\) = as for P100
\end{tabular} \& Num. \& 0 \& 23 \& 0 \& 0 \& 0 \& x

x
x \& x

x
x \& 0.33

1.38
0.33

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Parameter name \& \[
\frac{1}{5}
\] \& \[
\frac{E}{\frac{E}{3}}
\] \& \& \& \& \& \(\stackrel{0}{2}\) \& \(\stackrel{0}{\text { III }}\) \& \\
\hline 105 \& \begin{tabular}{l}
Options for safety edge and man-present mode (Connector X5 - J32) \\
\(0=\) Optical or resistive safety edge connected \\
1 = Pneumatic safety edge connected \\
\(2=\) Electrical safety edge connected, but only with inversion \\
3 = Pneumatic edge connected, but only with inversion \\
\(4=\) No safety edge connected - close only when man present \\
\(5=\) No safety edge connected - close also possible in industrial mode (semi-automatic opening and closure when man present) \\
\(6=\) No safety edge connected - open and close always when man present \\
\(7=\) SBA sensor connected \\
\(8=\) Beam safety edge (dipped beam) - within the pre-limit, edge activation ignored \\
\(9=\) Safety edge activation works in both directions with a short reverse (sliding gates) \\
\(10=\) Electrical safety edge connected - stop without reverse, open only when man present \\
11 = Electrical safety edge connected -0.5 s reverse, open only when man present \\
12 = Electrical safety edge connected - full door opening, close when man present
\end{tabular} \& Num. \& 0 \& 12 \& 0 \& 0 \& 0 \& x

x
x
x
x \& X

x
x
x

x \& | 0.33 |
| :--- |
| 0.96 |
| 1.16 |
| 1.30 |
| 1.31 |

\hline 106 \& | Radio receiver options |
| :--- |
| $0=$ No radio receiver connected |
| 1 = Normal operations as per command (OPEN - STOP - CLOSE) |
| $2=$ Open from inside |
| 3 = Open from outside |
| 4 = Apartment-block step-by-step | \& Num. \& 0 \& 4 \& 0 \& 0 \& 0 \& x

\times \& X

\times \& | 0.33 |
| :--- |
| 1.29 |

\hline 107 \& | Options for front panel buttons |
| :--- |
| $0=$ Normal operation |
| 1 = Front panel buttons locked | \& Num. \& 0 \& 1 \& 0 \& 0 \& 0 \& X \& X \& 0.53

\hline \& Options for outputs \& \& \& \& \& \& \& \& \&

\hline 110 \& | Options for relay 3 (X3 pins 1-2-3) |
| :--- |
| $0=$ Door closed signal |
| $10=$ Door status signal via internal red/green traffic light |
| 11 = Door status signal via external red/green traffic light |
| 12 = Door movement status signal - light on/off |
| 13 = Static signal in case of error |
| 14 = Close door bolt (see also parameter P84) |
| 15 = Open door bolt (see also parameter P85) |
| $16=$ Signal when moving door is detected |
| $17=$ Optical (or light) grid test |
| 18 =Alarm when door stays open for more than 30s |
| 19 = Radio safety edge test |
| $20=$ Air curtain activation (see also parameter P45) |
| $21=$ Connection of a relay to control an additional brake |
| 22 =Power transmission activation (for loading radio safety edges. See also parameters P88-P89) |
| 23 =Fire alarm |
| 24 = Door opening signal |
| 25 = Door closing signal | \& Num. \& 0 \& 25 \& 0 \& 0 \& 0 \& | X |
| :--- |
| x |
| x |
| X |
| x | \& \& | 0.33 |
| :--- |
| 1.12 |
| 1.42 |
| 1.46 |
| 1.49 |
| 1.49 |

\hline 111 \& | Options for relay 2 (X3 pins 4-5-6) $0=$ Door open signal |
| :--- |
| $10-25=$ as for P110 | \& Num. \& 0 \& 25 \& 0 \& 0 \& 0 \& X \& X \& 0.33

\hline
\end{tabular}

| Parameter No. | Parameter name | $\frac{7}{5}$ | $\begin{aligned} & \frac{E}{2} \\ & \frac{1}{E} \\ & \frac{2}{N} \\ & \hline 15 \end{aligned}$ | | | | | $\frac{0}{2}$ | $\xrightarrow{\text { II }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 112 | Options for relay 1 (X3 pins 7-8-9)
 $0=$ Traffic light manoeuvre indicator flashing
 $1=$ Traffic light manoeuvre indicator on steady
 $2=$ Traffic light manoeuvre indicator flashing but only during manoeuvre (off when door stationary)
 3 = Traffic light manoeuvre indicator on steady but only during manoeuvre (off when door stationary)
 10-25 = as for P110 | Num. | 0 | 25 | 0 | 0 | 0 | x x | x x | $\begin{aligned} & 0.33 \\ & 1.76 \end{aligned}$ |
| | Options for NDA030 board inputs | | | | | | | | | |
| 120 | Input 1 option
 $0=$ Secondary photocell
 $10-23$ = as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| 121 | Input 2 option
 $0=$ Open from outside
 $10-23=$ as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| 122 | Input 3 option $0=$ Enable partial opening $10-23$ = as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| 123 | Input 4 option
 $0=$ Enable automatic closing
 $10-23$ = as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| 124 | Input 5 option
 $0=$ Enable man-present movement mode
 $10-23$ = as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| 125 | Input 6 option
 $0=$ Fire detection - close door
 $10-23$ = as for P100 | Num. | 0 | 23 | 0 | 0 | 0 | X | X | 0.80 |
| | Options for NDA030 board outputs | | | | | | | | | |
| 130 | Relay output 1 options (NO) $0=$ Door open signal $10-25=$ as for P110 | Num. | 0 | 25 | 0 | 0 | 0 | X | X | 0.80 |
| 131 | Relay output 2 options (NO) $0=$ Door closed signal $10-25=$ as for P110 | Num. | 0 | 25 | 0 | 0 | 0 | X | X | 0.80 |
| 132 | Relay output 3 options (NO)
 $0=$ No active function by default
 $1=$ Test of first set of photocells
 $10-25=$ as for P110 | Num. | 0 | 25 | 0 | 0 | 0 | X | X | 0.80 |
| 133 | Relay output 4 options (NO)
 $0=$ No active function by default
 $1=$ Test of second set of photocells
 $10-25=$ as for P110 | Num. | 0 | 25 | 0 | 0 | 0 | X | X | 0.80 |
| | Additional parameters | | | | | | | | | |
| 140 | Short reverse time following safety edge trigger (see also parameter P105) | 1/10 Sec | 0 | 250 | 0 | 0 | 0 | X | X | 1.70 |

5.1.1. Automatic door cycles - P4

If wishing to perform tests by running continuous automatic cycles on the control units, parameter P4 can be used. This parameter, by default set to 0 (function disabled), allows the door to be moved every n seconds as set in $P 4$. For example, if $P 4=10$, each time the door reaches a limit stop (upper or lower), P4 starts a 10s count; once this time has elapsed, the door will open/ close automatically. To disable this function, simply press and hold the STOP button on the front panel for 3 seconds. If the STOP button is pressed once, the count will restart from 0 .

5.1.2. Overrun correction via brake activation - P20-P22

Parameter P20 is used to set the maximum deviation permitted by the control unit during the stop phase at the set limit stop. During setup after the position learning phase, the control unit automatically sets 2 values (P21 and P22) for brake activation to ensure that the door always stops at the same point. The tolerance of this deviation is set in this parameter and is valid for both parameters. If you wish to set 2 separate values for the closing and opening limit switches, you can change the individual values by setting P20 = 0 and manually changing P21 (for the opening limit switch) and P22 (for the closing limit switch).

5.1.3. Maximum permissible deviation from set limit switches - P14

During the position learning phase, the door must settle and the control unit must be able to work out the limit stops. During this phase, the door may exceed the set limit switch (upper or lower) and the control unit return error F08. To solve this problem (overrun), the door must first be raised or lowered to a known position within the set range. Then parameter P14, which adjusts the maximum tolerance, expressed in encoder increments, with respect to the set limit switch, is set. Increasing this value will increase the tolerance; decreasing it will decrease the tolerance. By default, three-phase and single-phase motors have lower values $(P 14=100)$ than inverter-controlled motors (P14 = 250). This is because the inverter has to manage acceleration and deceleration ramps, and the door may exceed the set limit stop, albeit only slightly, during installation.

5.1.4. Automatic ground adaptation - P30-P33

After learning the positions, parameter P30 can be set to make the door automatically adjust its closing position over time. This option is made available particularly for doors that tend to "elongate" over time. Parameter P30 manages the type of adjustment to be made. The adjustment is made by increasing or decreasing the position of the lower limit stop by " n " encoder increments set in parameter P31. If the value of P30 is 2, i.e. the adjustment is also performed downwards, parameter P32 is used to set the maximum value, again expressed in encoder increments, beyond which the door cannot correct its position: this is to avoid breaking the door. Parameter P33, on the other hand, is used to set the percentage of height that the door must reach before the correction is made and stored in the memory.

5.1.5. Power transmission for wireless safety edges - P88-P89 and P100-P112

If an output P110-P112 is set to 22, a power transmission charger can be connected for the wireless safety edge. Parameter P88 is used to set the time for which the output remains active and consequently the safety edge battery is allowed to charge, while parameter P89 is used to set the waiting time before the output reactivates the charging of the safety edge battery

5.1.6. Air curtain - P45 and P110-P112

If air curtains are installed, parameter P45 could be useful to set a waiting time before the curtain is deactivated. The time for deactivation will start to count down once the door has completed the closing manoeuvre and reached the lower limit stop. The output for activating the curtain can be set in parameters P110-P112 using the appropriate value

5.1.7. Brake management for inverters without identification label -P50-P54 and P57-P58

Unlike labelled inverters, which can manage brake activation via parameters U40-U41, brake management for unlabelled inverters will only be possible via parameters P50-P54 (see "P" series parameters table) and P57-P58. Below is an in-depth description of the latter 2 parameters:

- P57: used to set the range within which the brake must be activated, in the event that the control unit, on detecting the triggering of the safety edge, realises that the reverse speed is too slow compared to the expected speed. If, however, the speed is too low within the range set in P57, the control unit will activate the brake to prevent breakages in the system

P58: used to set a slight delay relating to the activation of the emergency STOP. By default, this parameter is set to a very low, almost instantaneous, value so that when the emergency STOP activates, the door will immediately stop (disconnecting the inverter, if present, until the stop button is reset)

5.1.8. Alternative display - P5

This parameter can be used to change the door's display from the default symbols to characters. In addition, if value 1 or 2 is set, different "E.xxx" warnings will be displayed for each button pressed or input activated
P5 =1: Text display of limit stops: similar to $\mathrm{P} 5=0$, but the display shows "OP" when the door reaches the upper limit stop and "CL" when it reaches the lower limit stop
P5 = 2: Text display of door movement: similar to above, instead of showing dashes to indicate the direction of the manoeuvre the display shows "OPn" during the opening manoeuvre and "CLS" during the closing manoeuvre

| E.101 | DOWN input activation (external) |
| :--- | :--- |
| E.102 | UP input activation (external) |
| E.103 | IMP input activation (external) |
| E.104 | Photocell activation (can also be displayed with P5 = 0) |
| E.105 | Loop detector 1 |
| E.106 | Loop detector 2 |
| E.107 | Radio control
 (visible after changing parameter P106) |
| E.161 | Emergency stop |
| E.201 | Press the DOWN button on the front panel |
| E.202 | Press the UP button on the front panel |
| E.360 | Safety edge trigger |

5.2 Inverter setting parameter table - "U" series

| Number | Name | Unit | Minimum value | Maximum value | Default EE_1 | Default EE_2 | Default EE_3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maintenance | | | | | | | |
| 1 | Type of device | Number | - | - | - | - | - |
| 2 | Version (number) | Number | - | - | - | - | - |
| 3 | Version (date) | Number | - | - | - | - | - |
| 4 | Version (year) | Number | - | - | - | - | - |
| 5 | Memory of detected short-circuits | Number | 0 | 30 | 0 | 0 | 0 |
| Speed | | | | | | | |
| 10 | Slow (or creep) frequency | Hz | 2 | 187 | 19 | 20 | 17 |
| 11 | Opening frequency | Hz | 2 | 187 | 60 | 50 | 70 |
| 12 | Slow closing frequency | Hz | 2 | 187 | 35 | 30 | 45 |
| 13 | Fast closing frequency (see also P59) | Hz | 2 | 187 | 60 | 50 | 50 |
| Motor power management | | | | | | | |
| 20 | Minimum frequency | Hz | 2 | 20 | 10 | 5 | 10 |
| 21 | Minimum voltage | Volt | 10 | 69 | 69 | 20 | 23 |
| 22 | Nominal frequency | Hz | 40 | 187 | 50 | 40 | 47 |
| 23 | Emergency nominal frequency | Hz | 30 | 187 | 42 | 40 | 46 |
| 24 | Maximum absorbed current for each motor phase | 1/10 A | 3 | 13.5 | 13.5 | 13.5 | 13.5 |
| 25 | Injection of a DC current | Number | 1000 | 2500 | 1000 | 1000 | 1000 |
| 26 | Duration of DC current injection | Sec | 100 | 600 | 600 | 600 | 600 |
| Ramps | | | | | | | |
| 30 | Acceleration ramp for opening manoeuvre | 1/10 Sec | 2 | 50 | 4 | 10 | 15 |
| 31 | Acceleration ramp for closing manoeuvre | 1/10 Sec | 2 | 50 | 4 | 10 | 10 |
| 32 | Deceleration ramp for opening manoeuvre | 1/10 Sec | 2 | 50 | 3 | 3 | 3 |
| 33 | Deceleration ramp for closing manoeuvre | 1/10 Sec | 2 | 50 | 3 | 3 | 3 |
| 34 | Deceleration ramp for stop | 1/10 Sec | 2 | 50 | 3 | 3 | 1 |
| Brake management | | | | | | | |
| 40 | Brake deactivation frequency | Hz | 0 | 50 | Not managed | 7 | 11 |
| 41 | Brake activation frequency | Hz | 0 | 50 | Not managed | 7 | 12 |
| Inverter monitoring | | | | | | | |
| 50 | Inverter power voltage | Volt | - | - | - | - | - |
| 51 | Inverter temperature (NTC) | Deg | - | - | - | - | - |
| P70 | Door operation selection | Number | 0 | 4 | 1 | 3 | 3 |

5.4 D-Pro Automatic errors list

TABLE 19 A - Control unit errors list
Error
FRO

Description

號

FO2
Fault detected during safety edge test

FO3

The safety edge detected an obstacle during the closing manoeuvre

| Fח4 | The door did not reach the lower limit stop within the
 time set in P61 | Prer |
| :---: | :--- | :--- |
| Fח5 | The door did not reach the upper limit stop within the | P | F05

FOG
The motor direction of rotation is incorrect

Error in photocell test on NDA030 board (encoder disconnected or broken)

Error in release cord test (cord loose)

EEPROM checksum error (serious error)

Input photocell activation on NDA030 board. The
F16

The "Fire detector" input on the NDA030 board is activated
After the number of attempts made, set in P44, automatic closing was interrupted
Automatic closing will be automatically disabled
"Service" is always displayed. Indicates a system maintenance request after the number of cycles performed by the system has exceeded the number of cycles set in P2

Communication with Nice inverter interrupted

Fault detected on motor drive relay contact

Fault detected on contact of the motor direction relays
Communication error with Nice inverter (generic error)
Communication error with Nice inverter (command rejected by inverter)
Communication error with Nice inverter (timeout after n seconds of no inverter response)

FJO
Door bolt fails to lock/unlock within the time set in P87 Communication error with Nice inverter (wrong inverter address)
Communication error with Nice inverter (inverter did not activate correctly)
Fault detected on brake control relay contact (only for D-Pro Automatic R10)

Solution

Close the door in man-present mode and with the door closed press the stop button on the front panel. If the error persists, check the integrity of the safety edge
Check if an obstacle is actually present and remove it. If the error persists, check that the safety edge is not broken, that the control unit connections are correct as per the manual and, if using pneumatic edges, that the piston has not jammed
Press the STOP button on the front panel
The timer can be removed by setting P60 = 0
Press the STOP button on the front panel
The timer can be removed by setting P60 = 0
Press the STOP button on the front panel.
Invert the motor direction of rotation
Press the STOP button on the front panel to attempt a new photocell test.
The control unit automatically clears the error as soon as the test is successful
Move the door to a known position (between upper and lower limit stops) by manual movement (manual release) or by using DIP switch 4 to raise (in case of lower limit stop overrun) or lower (in case of upper limit stop overrun) the door. When finished, return DIP switch 4 to OFF position
Reboot the control unit
The error will clear automatically as soon as the connection to the encoder and communication with it is restored

Check that the manual release cord is not loose
Reset the control unit to factory settings. If the error persists even after resetting, contact a technician

Close the door in man-present mode and then press the STOP button on the front panel.

Press the STOP button on the front panel.
If the error reappears, change the minimum time by changing the value in P63 or disable the function by setting P60 $=0$
The error will clear automatically as soon as the loop is correctly reconnected to the board
The error will clear automatically as soon as the loop is correctly reconnected to the board
The error will clear automatically as soon as the input is no longer active

Check there are no obstacles preventing the door from closing correctly. Press the STOP on the front panel to clear the error.

Request the assistance of a technician who will reset the cycle counter and service the system

Press the STOP button on the front panel

Press the STOP button on the front panel.
If a second error from the F2xx or E2xx series appears, see the "inverter errors" table. If the error persists, ensure you have correctly deleted it or contact technical support.

Press the STOP button on the front panel.
If the error persists, call a technician
Press the STOP button on the front panel.
If the error persists, call a technician
Press the STOP button on the front panel
Press the STOP button on the front panel.
If the error persists, switch off the control unit and wait approximately one minute before switching it back on
Press the STOP button on the front panel.
If the error persists, switch off the control unit and wait approximately one minute before switching it back on
Press the STOP button on the front panel.
If the error persists, check the door bolt lock is not broken
Press the STOP button on the front panel.
If the error persists, switch off the control unit and wait approximately one minute before switching it back on
Press the STOP button on the front panel.
If the error persists, switch off the control unit and wait approximately one minute before switching it back on
Press the STOP button on the front panel.
If the error persists, call a technician

| F34 | Error in photocell test (only for D-Pro Automatic R10) | Press the STOP button on the front panel to attempt a new photocell test. The control unit automatically clears the error as soon as the test is successful |
| :---: | :---: | :---: |
| F35 | The difference between the upper and lower limit switch is less than 500 or greater than 8100 encoder increments | Contact a technician for encoder replacement |
| FEC | Communication error with inverter (inverter error not read correctly) | Press the STOP button on the front panel.
 If the error persists, switch off the control unit and wait approximately one minute before switching it back on |
| FG1 | Communication error with inverter (inverter error reading not possible) | Press the STOP button on the front panel.
 If the error persists, switch off the control unit and wait approximately one minute before switching it back on |
| F10\% | Release cable input activation (Terminal X2-J10) | These errors clear automatically as soon as the control unit detects the safety chain is closed again |
| F101 | Key release activation (Terminal X9-J14) | |
| F102 | Emergency button activation ("Notaus" terminal) | |
| F1ワ3 | Absence of boost capacitor control board (Terminal X8) | |
| F104 | Motor thermal relay activation or manual release activation | |

5.5 Nice inverter errors list

TABLE 19 B - Nice inverter errors list

| Error | Description | Solution |
| :---: | :---: | :---: |
| Fㄷํ | Short-circuit protection.
 The error will first appear as "E200" and then change to "F200" when it can be cleared | Press the STOP button on the front panel |
| F2C1 | Overvoltage protection | Press the STOP button on the front panel |
| F2\%2 | Undervoltage protection | Press the STOP button on the front panel |
| F-7] | Over- or under-temperature protection | Press the STOP button on the front panel |
| F2Пㄴ | IGBT module overload protection (motor control) The error will first appear as "E204" and then change to "F204" when it can be cleared | Press the STOP button on the front panel |
| F205 | Motor overload protection (current too high on phases: see parameter U24)
 The error will first appear as "E205" and then change to "F205" when it can be cleared | Press the STOP button on the front panel |
| F-26 | Error history (if U5 value > 29) | Reset U5 value by entering the parameter and holding down the STOP button on the front panel until the value returns to 0 |
| F-ロ\% | Software overcurrent protection | Press the STOP button on the front panel |
| F2ng | Protection from broken cables (missing motor phase) | Check the motor is correctly connected and/or a phase cable is not broken The control unit automatically clears the error as soon as the resistor is reconnected |
| F2\%9 | Protection for communication failure with D-Pro Automatic | Reboot the control unit |
| F-10 | Protection for communication failure with encoder | Reboot the control unit |
| FO11 | Short-circuit protection on IGBT module | Press the STOP button on the front panel |
| Fal2 | IGBT module integrity protection | Press the STOP button on the front panel |
| F913 | Braking resistor broken or not connected | Contact a technician |

6. DISPOSING OF THE PRODUCT

基
The adjacent symbol affixed to the product indicates that it is considered as WEEE.
The abbreviation WEEE (Waste Electrical and Electronic Equipment) indicates that this product:
-at the end of its useful life must not be assimilated with other household waste but must be disposed of separately; -contains mixed recyclable and non-recyclable materials;
As such, if you have to dispose of the product, it must be "collected separately" in accordance with the regulations in force in your area.
Warning! - Some parts of the product may contain polluting or dangerous substances. If not disposed of correctly, these substances may have a damaging effect on the environment and human health.
Warning! - Local regulations may impose heavy penalties if this product is not disposed of in compliance with the law.
Warning! As with the installation, only qualified personnel must dismantle the product at the end of its life.

7. PRODUCT SPECIFICATIONS

NOTES

- All of the technical specifications given refer to a temperature of $20^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$.
- Nice reserves the right to make such changes to the product as are deemed necessary while maintaining its functionality and intended use.
- The complete use manual consists of the use instructions for the automation and the instructions for the control unit belonging to it.

| Model | NDCC1000 | NDCC1100 | NDCC1200 |
| :---: | :---: | :---: | :---: |
| Type | Control unit for three-phase motors | Control unit for inverter motors | Control unit for single-phase motors |
| Power voltage | 3~400Vac (+10\%-10\%) 50/60Hz | 1~230Vac (+10\% -10\%) 50/60Hz | 1~230Vac (+10\%-10\%) 50/60Hz |
| Motor max. power | 2.2 kW | 2.2 kW | 2.2 kW |
| Consumption in standby | <5W | | |
| Power board fuses | F1,F2,F3: 6.3A Type T | F1,F2,F3: 10A Type T | F1,F2,F3: 6.3A Type T |
| Logic board safety fuse | F4: 1A Type F | | |
| Logic power voltage | 24 Vdc (with secondary protection F4) | | |
| Output 1 (Relay 1) | Dry contact, programmable in parameter P112 | | |
| Output 2 (Relay 2) | Dry contact, programmable in parameter P111 | | |
| Output 3 (Relay 3) | Dry contact, programmable in parameter P110 | | |
| Services output | 24Vdc (max. 800mA, resistive load) on connector X5-J30 with removable terminal | | |
| Safety edge | Resistive or pneumatic safety edge (selecting via "8k2" jumper) or OSE optical safety edge (selecting via "Opto" jumper), programmable in parameter P105 | | |
| UP input | For normally open contacts (NO), programmable in parameter P100 | | |
| DOWN input | For normally open contacts (NO), programmable in parameter P101 | | |
| IMP input | For normally open contacts (NO), programmable in parameter P102 | | |
| STOP input | For normally closed contacts (NC), safety circuit | | |
| PRE LIMIT input | For normally open contacts (NO), programmable in parameter P103 | | |
| Photo input | For normally closed contacts (NC), programmable in parameter P104 | | |
| Radio connection | SM connector for compatible Nice receivers (Options programmable in parameter P106) | | |
| Radio aerial input | 52 ohm for RG58 cable or similar (max. 10m) | | |
| Programmable functions | Functions programmable in programming mode with compatible interfaces | | |
| Operating temperature | $\left(-20^{\circ} \mathrm{C} \div 50{ }^{\circ} \mathrm{C}\right)$ | | |
| Use in particularly acidic, saline or potentially explosive atmospheres | No | | |
| Protection rating | IP65 | | |
| Vibration | Swing-free mounting (e.g. on a masonry wall) | | |
| Dimensions | $310 \times 210 \times 125 \mathrm{~mm}$ | | |
| Weight | 3.5 kg | | |

EC Declaration of Conformity and declaration of incorporation as "partly completed machinery"

The EC Declaration of Conformity can be downloaded from our website www.niceforyou.com

Nice
Made in Italy
NDCC1200
Nice SpA Va Call \quad NDCC1200

| $2,2 \mathrm{~kW}$ | $1 \sim 230 \mathrm{~V}, 50 \mathrm{~Hz}$ |
| :--- | :--- |

$1-20^{\circ} \mathrm{C}-1+50^{\circ} \mathrm{C}$
wo C-123456
SIN: 0301232631803030I
IP65 CE
UTU CK

